—
S

_.}
Volume |I—Fundamentals
ELEVENTH EDITION

CAY §. HORSTMANN
T

Core Java

Volume I—-Fundamentals

Eleventh Edition

This page intentionally left blank

Core Java

Volume I—Fundamentals

Eleventh Edition

Cay S. Horstmann

vvAddison-Wesley

Boston ¢ Columbus ® New York ¢ San Francisco ¢ Amsterdam ¢ Cape Town
Dubai ® London ¢ Madrid ® Milan ¢ Munich e Paris ® Montreal ® Toronto ® Delhi « Mexico City

Sao Paulo * Sydney ¢ Hong Kong ¢ Seoul ¢ Singapore ® Taipei ® Tokyo

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may
include electronic versions; custom cover designs; and content particular to your business, training goals,
marketing focus, or branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the United States, please contact international @pearsoned.com.
Visit us on the Web: informit.com

Library of Congress Preassigned Control Number: 2018942070

Copyright © 2019 Pearson Education Inc.

Portions copyright © 1996-2013 Oracle and/or its affiliates. All Rights Reserved.

Oracle America Inc. does not make any representations or warranties as to the accuracy, adequacy or
completeness of any information contained in this work, and is not responsible for any errors or omissions.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All such
documents and related graphics are provided "as is" without warranty of any kind. Microsoft and/or its
respective suppliers hereby disclaim all warranties and conditions with regard to this information, including
all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular
purpose, title and non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for
any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data
or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection
with the use or performance of information available from the services. The documents and related graphics
contained herein could include technical inaccuracies or typographical errors. Changes are periodically
added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or
changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be
viewed in full within the software version specified.

Microsoft® Windows®, and Microsoft Office® are registered trademarks of the Microsoft Corporation in the
U.S.A. and other countries. This book is not sponsored or endorsed by or affiliated with the Microsoft
Corporation.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, request forms and the appropriate contacts within the Pearson Education Global Rights &
Permissions Department, please visit www.pearson.com/permissions/.

ISBN-13: 978-0-13-516630-7
ISBN-10: 0-13-516630-6

ScoutAutomatedPrintCode

http://informit.com
http://www.pearsoned.com/permissions/
mailto:governmentsales@pearsoned.com

Contents

PrefacCe ... Xix
ACKNOWIEAGIMENTS ... a e e eans XXV
Chapter 1: An Introduction to Javaccccciiiiiicmmmsnr e 1
1.1 Java as a Programming Platformcccoccociiiiininnin 1
1.2 The Java “White Paper” Buzzwordsc.cccoceviiiiiiiniiiniiiiiiinn, 2
121 SIMPIe oo 3

1.2.2 Object-Orientedcccceoiiiiiiiiiiiiiiiiiiicce 4

1.2.3 Distributedcccociimiiiiiiiie e 4

1.2.4 RODUSL weeiiiiiiiieeeeeee et 4

12,5 SECUIE oottt st 5

1.2.6 Architecture-Neutralccccceeveiriiiniiiniiiniiniceeeceeee 6

1.2.7 Portable ..o 6

1.2.8 Interpreted ..o 7

1.2.9 High-Performancecccccocoviiiiiiiiiniiiiiiicce, 7

1.2.10 Multithreadedccocveviiiiiiniiiiienieeeeeeeeeeeee 8

1.2.11 DyNamicC ...oooeviiiiiiiiiiiiiiciicicceccee e 8

1.3 Java Applets and the Internetccoecoviiiiiiiiii 9
1.4 A Short History of Java ..o 10
1.5 Common Misconceptions about Javacccccccoeiiiiiiiiiiininnnnn 13
Chapter 2: The Java Programming Environmentcccococmiieniieennisennns 17
2.1 Installing the Java Development Kitcccocooiiniiiiini 18
2.1.1 Downloading the JDKccccocivviiiiniiiiiiiiiiiiiiii 18

2.1.2 Setting up the JDKccooiviiiiiiiiiiii 20

2.1.3 Installing Source Files and Documentation 22

2.2 Using the Command-Line ToOIscccoceiiiiiiiniiiiiiiiiiiii 23
2.3 Using an Integrated Development Environmentc.ccocoovenne. 29
2.4 JSREIL oot 32

n Contents

Chapter 3: Fundamental Programming Structures in Java 37
3.1 A Simple Java Programcccocioiiiiiiniiiiii 38
3.2 CommMENtSooviiiiiiiiiiic 41
3.3 Data TYPES oot 42

3.3.1 Integer Typescccviiiiiiiiiiiiiiicc 43
3.3.2 Floating-Point Typescccccoiviiiiiiiiiiiiiiiiiiii 44
3.3.3 The char TYPe ceoviiiiiiiiiiicic s 46
3.34 Unicode and the char Typecccccoviviiiiininiiiiiiiii, 47
3.3.5 The boolean TYPE ..ccovuiruiiiiiiiiiiiiiiii i 48
3.4 Variables and Constantscccoceviiiiviiiiiiii 48
3.4.1 Declaring Variablescccocoviiiiiiniiiiiniiiiiii 48
3.4.2 Initializing Variablescccccoooiviviiiiiiii 50
3.4.3 Constantscccoiiiiiiiiiiiii 51
3.4.4 Enumerated Typescccoovviiiiiiiiiiiiiiiiiciccec 52
3.5 OPerators ...t 52
3.5.1 Arithmetic Operatorscccccceviviiiiiiiniiiiii 52
3.5.2 Mathematical Functions and Constantsc..ccccoeeenin 54
3.5.3 Conversions between Numeric Typescccoceoeeeinine. 56
354 CaStS i 57
3.5.,5 Combining Assignment with Operatorsc........... 58
3.5.6 Increment and Decrement Operatorscccccecuinuinnnnnne 58
3.5.7 Relational and boolean Operatorsccccccccevviiiiiiiiiiiniinnn, 59
3.5.8 Bitwise Operatorsccccoeiiiiiiiiiiiiiiniiiii 60
3.5.9 Parentheses and Operator Hierarchyccccccoevviininnninn, 61
3.6 SHNES weovviiiieiiccec 62
3.6.1 Substrings ..o 62
3.6.2 Concatenationcccocviviiiiiiniiiiii 63
3.6.3 Strings Are Immutablecccccooiiiiiiin 63
3.6.4 Testing Strings for Equalitycccoooiiiniiiniiiii 65
3.6.5 Empty and Null Stringsccccoeciviiiiiiniiiiii 66
3.6.6 Code Points and Code Unitsccccooiviiiiiiiiiininiinnne 66
3.6.7 The String AP ... 68
3.6.8 Reading the Online API Documentationccccoccueee. 71
3.6.9 Building Stringscccoceviiiiiiiiii 74

3.7 Input and Outputccccooiiiiiiiiiiiii 75

Contents

3.7.1 Reading Input ..o 75

3.7.2 Formatting Outputccccoeiiiiiiii, 78

3.7.3 File Input and Outputccociviiiiiiiiiiii, 83

3.8 CONtrol FIOW oot avaee e 86
3.8.1 Block S5COPE ...oouiiiiiiiiiiiiii 86

3.8.2 Conditional Statementsccceevveeieiiiiiiiieee e, 87

3.8.3 LOOPS eiiieiiiiiiieiiei 91

3.8.4 Determinate LOOPScccoevuiiiiiiiiiiniiiiiiiiiiciicns 95

3.8.5 Multiple Selections The switch Statementccoe.. 99

3.8.6 Statements That Break Control Flowccccccevvvreinnnnnennn. 102

3.9 Big Numberscccooiiiiiii 105
310 ATTAYS wooviiiiiiiiicciiccieeie s 108
3.10.1 Declaring AITayscccocovieiiiiniivieniiiiicceenceneeee e 108
3.10.2 Accessing Array Elements ... 109
3.10.3 The “for each” LOOP «.cocceviiiiiiiiiiiiiiiiiececccec 110
3.10.4 Array COPYING .cccooevviiiiiiiiiiiiiiiieieicicii e 111
3.10.5 Command-Line Parameterscccceeevvverrciieeercieeeenneeennnne. 112
3.10.6 Array SOTHNGccoovvviviiiiiiiiiiiii 113
3.10.7 Multidimensional AITayscccccoiviiiiiiiiniiiiiiiniinen, 116
3.10.8 Ragged AITaysccccceviiriiriiiiniiieieiccccc e 120
Chapter 4: Objects and ClasSescccccerrrrrssssssssrsrssrsrrrrssssssssssmssssnnsnsssssssss 125
4.1 Introduction to Object-Oriented Programmingcccccccovvennrnns 126
411 CLASSES cieieieiiieeeeeiiiieee e eectee e e ettt e et e e e et e e e e e e eaaneeas 127

4.1.2 ODbjects ...cccoviiiiiiiiiiiii 128

4.1.3 Identifying Classesccccoeiiiiiieiiiiiciiiiieec 129

4.1.4 Relationships between Classesccccocooviviiiiiniiinnins 129

4.2 Using Predefined Classescccccociviviiiiniiiniiiiiiincic 131
4.2.1 Objects and Object Variablescccccoiviiiiiiiinininn. 132

4.2.2 The Localdate Class of the Java Libraryccccocviiiinninns 135

4.2.3 Mutator and Accessor Methodsccccveeiiivciiiieieeecnnnen. 138

4.3 Defining Your Own Classesccocovvviviiiiiniiiiiniiicieiecn, 141
4.3.1 An Enployee ClLasS ..euvveieieeiiiiieieeeeciiieeeeeeireee e e eeiireeee e e eeeaneeas 142

4.3.2 Use of Multiple Source Filesc..ccocooveiiiiiiniinnnn. 145

4.3.3 Dissecting the Employee Classccoevivviviiiiiiiiiiniiniiicns 146

4.3.4 First Steps with Constructorsccccccoviiiniiiinininn 146

Contents
4.3.5 Declaring Local Variables with varccccoccooiiiinin, 148
4.3.6 Working with null Referencescccccoevvviiiniiinininnnn 148
4.3.7 Implicit and Explicit Parametersccccccovviiiiiiininnnnnn. 150
4.3.8 Benefits of Encapsulationcccocoviviininiiiin 151
4.3.9 Class-Based Access Privilegesccccocovviiiiviiiiiniiniencnns 154
4.3.10 Private Methodsoocceiiiiiiiiiiiiiiee e 155
4.3.11 Final Instance Fieldsccccccoooiiiriiiiniiiiiiiieecieee e, 155
4.4 Static Fields and Methodscccceviiiiiiiiiiniiiiiiceceeee, 156
441 Static Fields ..ooooovieiiiiciieieee e 156
4.4.2 Static Constantsccecccveieeeiriiiiieee e 157
4.4.3 Static Methodsccooiiiiiiiiiiiii e 158
4.4.4 Factory Methodsc.cccooiiiiiiiiiiii 159
4.4.5 The main Methodcooooiiiiiiiiiiiiiiie e 160
4.5 Method Parameterscoccovuveeieieiciiiieeee et 163
4.6 Object Constructioncccoecviviiiiiiiiiiiiiiiiii e, 170
4.6.1 Overloadingccoeiiiiiiiii 170
4.6.2 Default Field Initializationcccccceeviiienniiiiniieeeeiee e, 171
4.6.3 The Constructor with No Argumentsc..ccccovinnininn. 172
4.6.4 Explicit Field Initializationcccccocoiivniiiiin 173
4.6.5 Parameter NaAmMescccceviiiiriiiiiiiiiieiieeeniiee e 174
4.6.6 Calling Another Constructorccccocevviiviiniiiiiiiiinnnn, 175
4.6.7 Initialization BIOCKSccccevvviiiiiiiiieiiieee e, 175
4.6.8 Object Destruction and the finalize Method 180
4.7 PacKagesccccociiiiiiiiiiiii 180
4.7.1 Package Namescccccovveiiviiiiininiiiiiceeece 181
4.7.2 Class Importationc.cccceeveviiiniiiiiiiiiii 181
4.7.3 Static Importscccocvviiiiiiiiiii 183
4.7.4 Addition of a Class into a Packagec..cccecooiiiia, 184
4.7.5 Package ACCESSccoviiiiiiiiiiiiciceeee e 187
4.7.6 The Class Pathcccoocuiiiiiiiiiiiii e 189
4.7.7 Setting the Class Pathccccoooiiiiiiii 191
4.8 JAR FILES weeieiiiiiiiiiieiie ettt st 192
4.8.1 Creating JAR filesccccoooiiiviiiiiiiiiiiiii, 192
4.8.2 The Manifestcccceeeeiiiieiiiieeiie e 193

4.8.3 Executable JAR Filesccccceivviiiiiiiieeiieee e, 194

Contents

4.8.4 Multi-Release JAR FileSouevvveeviviiiiiieiiiiieeeeeieeee e, 195

4.8.5 A Note about Command-Line Optionsccccecuevviiinine 197

4.9 Documentation COMMENESccccvvivireieriiiiireeeriiieee e erreee e 198
4.9.1 Comment INSErtionccccccceveiiiiiiiiiiiieiicieeeeeeeeee e 199
4.9.2 Class COMMENES ..cccovruviiiieeriiiiieeeeeeiiieeeeeeieeeeeeeeeieeeeeeeas 199

4.9.3 Method Commentscccceeeeeeeeiiieeeeieiiieee e e 200

4.9.4 Field COMMENLES ...vvvviiiiiiiiiieieieeiieee e 201

4.9.5 General COmMmENtScc.oeeveevriiiieeeeriieeeeeereee e eseaeeee e 201

4.9.6 Package Commentsccccoevriiiiiniiniiiiiiiiiiii 202
4.9.7 Comment Extractioncccccoecverenriiiiieeriniiieee e 203

4.10 Class Design Hintsccocooiiiiiiiii 204
Chapter 5: INheritanceccccuvmrninimmimnesnne s sssssnns 207
5.1 Classes, Superclasses, and Subclassescccccocviviiiiiiiinnnnn, 208
5.1.1 Defining Subclassescccoeviiiviiiiiniiiiiiiiiiecn 208

5.1.2 Overriding Methodscccooeiiiiii, 210

5.1.3 Subclass Constructorsccoecvveeriiereeciieeniiee e 211
5.1.4 Inheritance Hierarchiesccccccceeeviiiiiiiiiiiciiiiee e, 216

5.1.5 Polymorphismccccccoviiiiiniiiiiiiiiii 217

5.1.6 Understanding Method Callsc.cccoeeiniiiiininnnnnn 218

5.1.7 Preventing Inheritance: Final Classes and Methods 221

5.1.8 Casting ...cceveeieiiiiiiiiieiee 223

5.1.9 Abstract ClasSesccccovveieeeiriiiieeeeeiiieee et svaeee e 225
5.1.10 Protected ACCESS ..cccoovcurieieeeeeiieeee ettt 231

5.2 Object: The Cosmic Superclassccocevviiiiiiiiniiiiiiiiiiiiici, 232
5.2.1 Variables of Type 0bjectccccoceviiiiiiiiiiiiiiiiiiiii 232

5.2.2 The equals Methodccoovvveiiiiiiiiieeieiieeee e 233

5.2.3 Equality Testing and Inheritancecccccoceviinininnn. 234

5.2.4 The hashCode Methodcccceveviiiiiiiiiiieeiie e 238

5.2.5 The toString Methodcoooeiiieiiiiiiieeeeeeeee e, 241

5.3 Generic Array Listscccooviiiiiiiiiiii 248
5.3.1 Declaring Array Listscccocoviiviiiniiiiiiiii 248

5.3.2 Accessing Array List Elementscccccoovviiiiiinn 251

5.3.3 Compatibility between Typed and Raw Array Lists 255

5.4 Object Wrappers and Autoboxingcccccevvviviiiiiiniinininnnnn, 256
5.5 Methods with a Variable Number of Parameters 260

- Contents

5.6 Enumeration ClasSesccccccveereiiiiieeeiiiiiieeeeesirieeeeeesinreeeeeesseennes 261
5.7 RefleCtiON ...evviiiiiiiiiiiee et 264
5.7.1 The (1855 Class .ccveererreeiiiieeeeeiiiieeeeeeiereeeeeerrree e e e ennreeee e 264

5.7.2 A Primer on Declaring Exceptionscccococoiiiiiine, 267

5.7.3 RESOUICES ..ettiiieiiiiiiieieeiiiiee ettt et e e ettt e e e e eaeeeee s 268

5.7.4 Using Reflection to Analyze the Capabilities of Classes 271

5.7.5 Using Reflection to Analyze Objects at Runtime 277

5.7.6 Using Reflection to Write Generic Array Code 283

5.7.7 Invoking Arbitrary Methods and Constructors 286

5.8 Design Hints for Inheritanceccococovviiiiiiiiiiii, 290
Chapter 6: Interfaces, Lambda Expressions, and Inner Classes 295
6.1 INEEITACES .uvveiiiiiieiiiie ettt e tae e e sre e e s b e e e eseraeenns 296
6.1.1 The Interface Conceptccccevviviiiniiiniiiiniiiiie, 296

6.1.2 Properties of Interfacesccccocoeivviiiiiiiiiininiii 303

6.1.3 Interfaces and Abstract Classesccccceevvveeeviveeenrreeennnnn. 305

6.1.4 Static and Private Methodscccccevveiiiieiiiiieieiieiiieeec e, 306

6.1.5 Default Methodscccceeeviiiiiiiiiciiie e 307

6.1.6 Resolving Default Method Conflictsccccooiiininnnn. 308

6.1.7 Interfaces and Callbacksccccceevirerrirenriieeniieeriee e, 310

6.1.8 The Comparator Interfaceccccceveeeevciveeieieiiiee e 313

6.1.9 Object CloNiNgccceceeiiiiiiiiiiiiiiiiiiiiccccc e 314

6.2 Lambda EXPressionsccccccvviiiiiiiiiiiiiiiiiiiiiiciiiccce 322
6.2.1 Why Lambdas?cccocvviiiiiiiiiiiiiiiii 322

6.2.2 The Syntax of Lambda Expressionsccccoeeeirviinninnn. 323

6.2.3 Functional Interfacesccccoovveveiiiiiiieiiieeiiieee e 326

6.2.4 Method Referencescccceeeevereeciiieeniieeerieeeeireeesveee e 328

6.2.5 Constructor Referencescccceeeevveeevvieeenveeeeiieeeeveee e 332

6.2.6 Variable Scopeccccooiiiiiiiiiiiiiiiii 333
6.2.7 Processing Lambda Expressionsccccceeevviiiiiiniinnnne. 335

6.2.8 More about Comparatorsccccceevvviiiiiinininiiiiine, 339

6.3 INNET ClASSES 1ioveiriiiieeeeiiiiee e eeeee e et e e e e ree e e e e s e e e e e snnneeaeens 340
6.3.1 Use of an Inner Class to Access Object State 341

6.3.2 Special Syntax Rules for Inner Classesc.cccccocevurnne. 345

6.3.3 Are Inner Classes Useful? Actually Necessary? Secure? 346
6.3.4 Local Inner Classesccocoviviiiiiiiiiiniiiiiiiicice 349

Contents

6.3.5 Accessing Variables from Outer Methodsc..c..c....... 350

6.3.6 Anonymous Inner Classescccccoooviiinininiiiinininnnn, 352

6.3.7 Static Inner Classesccccevueeeriiiieniieeiniieenieeeeieeeeieee 356

6.4 Service Loadersccooiiiiiiiiiiieiiie et 360
6.5 PIOXIES ..eeiiiiiiiiiiiiiiiecete ettt et 362
6.5.1 When to Use Proxiesccccocceemiiiiiniieiiniiiiiiieenieeeeee 363

6.5.2 Creating Proxy Objectscccccevviviiiiiiiiiiiiiiiiiiin, 363

6.5.3 Properties of Proxy Classesccccccvrviviiiviniiiniicninnnn. 368
Chapter 7: Exceptions, Assertions, and Loggingc.ccccevcvssssssnsscmmennnnn 371
7.1 Dealing with EITOIScccooiiiiiiiiiiiiiiiic, 372
7.1.1 The Classification of Exceptionsccccecvvivviiiiininnnnn 373

7.1.2 Declaring Checked Exceptionsccccoceeveiiiivinninnnnn. 375

7.1.3 How to Throw an Exceptionc.cccovvviviiiinininnnnn 378

7.1.4 Creating Exception Classescccocoviviniiiiiiiicncnnnnnnn, 380

7.2 Catching EXCeptionscccoccviiiiiiiiiiniiniiiiicc 381
7.2.1 Catching an Exceptionccccccoiviiiiiiiiiniiniiininin, 381

7.2.2 Catching Multiple Exceptionsccccoceviiiiviiiininnnnne. 383

7.2.3 Rethrowing and Chaining Exceptionsccccccoeininninnn 384

7.2.4 The finally ClausSeccoooeeieeiiiiiiiiiiiiiiiereeeeeeeeee e e e e e e 386

7.2.5 The try-with-Resources Statementcccccevevvvniveeeennnnns 389

7.2.6 Analyzing Stack Trace Elementsc..ccocooveiiiiiinnnn. 391

7.3 Tips for Using EXceptionscccceciviiiiniiiiniiniiiiiiiiiicn, 396
7.4 Using ASSertionscccccieviiiiiiiiiiiiiiiiiccic e 399
741 The Assertion Conceptcccoeviiviiiiiiiiiniiiiiiiiiii, 399

7.4.2 Assertion Enabling and Disablingc..cccocooeii 400

7.4.3 Using Assertions for Parameter Checking 401

7.4.4 Using Assertions for Documenting Assumptions 402

7.5 LOZEGING oot 403
7.5.1 Basic LOGgING ..c.cccoivviiiiiiniiiiiic 404

7.5.2 Advanced Loggingcccccoceviviviniiiiiiiiiiiiiiii 405

7.5.3 Changing the Log Manager Configuration 407

7.5.4 Localizationccccoeiiiiiiiiiiiiiiiiiee e 409

7.5.5 HaNAIErsccceieiiiieeiiie ettt 410

7.5.6 FIIErS ooiiiiiiiiiiiiiiee et 414

7.5.7 FOrmattersooooiiiiiiiiiiiiee e 415

u Contents

7.5.8 A Logging Recipeccccoeiviiiiiiiniiiiiiiiiii, 415
7.6 Debugging Tipsccccccoviiiiiiiiiiiiiiiiiic 425
Chapter 8: Generic Programmingccccccceeiemeccsssssssssmmmsmsssnsssssssssssssnnmmnsens 431
8.1 Why Generic Programming?ccococeeiviiiiiiiiniiieccceeee 432
8.1.1 The Advantage of Type Parametersccccceovviriinnrnnn. 432
8.1.2 Who Wants to Be a Generic Programmer? 433
8.2 Defining a Simple Generic Classccoovviiiiiiiiiiiiiiiiiicnnn, 434
8.3 Generic Methodsceiieeciiiiiiiieciieee e 437
8.4 Bounds for Type Variablesccccccociiiiiiiiiiiniiiiiiiii, 438
8.5 Generic Code and the Virtual Machinecccccevvveevcvieeerennnen, 441
8.5.1 Type Erasureccccoviviiniiiiiiiiniiiciicccccecc 441
8.5.2 Translating Generic EXpressionsccccoeeevvveiinnienenenne. 442
8.5.3 Translating Generic Methodscccocevviiiiiiiin, 443
8.5.4 Calling Legacy Codecccoeoviiiiiiiniiiiiiiiiiiiiciice, 445
8.6 Restrictions and Limitationsccccceeeveciiiieeeerrciiiiee e 447
8.6.1 Type Parameters Cannot Be Instantiated with Primitive

TYPES oot 447
8.6.2 Runtime Type Inquiry Only Works with Raw Types 447
8.6.3 You Cannot Create Arrays of Parameterized Types 448
8.6.4 Varargs Warningscccceceeviiniiniiniiiniiiiiccccecee, 448
8.6.5 You Cannot Instantiate Type Variablesc........ 450
8.6.6 You Cannot Construct a Generic Arraycccoceeveenennee. 451

8.6.7 Type Variables Are Not Valid in Static Contexts of
@] o =) o (ol @ P 111 SRR 452

8.6.8 You Cannot Throw or Catch Instances of a Generic
CLASS euetiiieeeeicieee ettt e et e e e e e e e e e rtra e e e e eearaaeeaeeennes 453
8.6.9 You Can Defeat Checked Exception Checking 454
8.6.10 Beware of Clashes after Erasurec.cccceceeeevveeennreeennenn. 455
8.7 Inheritance Rules for Generic Typesccccocivviviiiiiiiiiiiiiinnnnnn 457
8.8 Wildcard Typescccooiviiviiiiiiiiiiiieieccc 459
8.8.1 The Wildcard Conceptccccoeurviviniiiniiiiiiiiiiiiie, 459
8.8.2 Supertype Bounds for Wildcardscccccceviniiinininnnne. 461
8.8.3 Unbounded Wildcardsccocceveerivnriiiieeeiiiieee e 464
8.8.4 Wildcard Captureccccoeviiiiiiiiiiiiiiiiiiiiicie 465

8.9 Reflection and GeNeriCSccooiiiviiiiiiiiiiieeeeeeeeeee e 467

Contents

8.9.1 The Generic (lass Classcccooeviiiiiiiiiiiiiiiiiiiiice, 467

8.9.2 Using (lass<T> Parameters for Type Matching 469

8.9.3 Generic Type Information in the Virtual Machine 469

8.9.4 Type Literalscccccooeviiiiiiiiiiiiiiiiii 473
Chapter 9: Collectionsccccucvemerminssmmnnmssssmsssnsssssss s ssmms s ssmmssnnas 481
9.1 The Java Collections Frameworkccoccceviirviirneinicenennienneene 482
9.1.1 Separating Collection Interfaces and Implementation 482

9.1.2 The Collection Interfacecccooeviiviiiiiiininiiiiii, 485

9.1.3 Tteratorscccccoviiiiiiiiiiii 485

9.14 Generic Utility Methodsccccooiiiiiiiii 489

9.2 Interfaces in the Collections Frameworkccccocevviniiininnnnne. 492
9.3 Concrete Collectionsccoceviiiiiiiiiiiiiiiiiiii, 494
9.3.1 Linked Listsccccoviiiiiiiiiiiiiii 496

9.3.2 Array Lists ... 507

9.3.3 Hash Sets ..o 507

9.3.4 Tree Sets ...cocccooviiiiiiiiiiiiiiiii 511

9.3.5 Queues and Dequesccceviiiiiiiiiiiiiiiiiii 516

9.3.6 Priority QuUeuesccccooviiiiiiiiii 518

9.4 MAPS oot 519
9.4.1 Basic Map Operationscccoceveeiiiiiiiiiniiniiccicec, 519

9.4.2 Updating Map Entriesccocovevieiiiiiiiiiiicc, 523

9.4.3 Map VIEWS cccoiiiiiiiiiiiiiiiiiiiii 525

9.44 Weak Hash Mapsccccooviviiiiiiiiiiiiiiiiiii 526

9.4.5 Linked Hash Sets and Mapscccccocuvviiviiiiiiiiiiiinnnnn, 527

9.4.6 Enumeration Sets and Mapsccccocoviiiiiiiiiiiininnnn 529

9.4.7 Identity Hash Mapscccccooiiiiiiiiiiniiiiiiiicicicc 530

9.5 Views and WIappersccccociiiiiiiiiiiiiiiiiiciic e 532
9.5.1 Small Collectionsccccecuieiiiriiiieiiiiiiienieeee e 532

9.5.2 SUbranges ...t 534

9.5.3 Unmodifiable VIeWscccccciiiiiiiiiiiiiiiiiiiiiiiice 535

9.5.4 Synchronized Viewsccccoiiiiiiiiiiniiiiiiiiiici, 536

9.5.5 Checked VIewsccccociiiiiiiiiiiiiiiiiiiiiici 536
9.5.6 A Note on Optional Operationsccccceeviivuiiiiiinnncnnn. 537

9.6 Algorithms ..o 541

9.6.1 Why Generic Algorithms?ccccooiiiiiiiniii 541

Contents
9.6.2 Sorting and Shufflingcccocecviviiiniiiiiiiiien, 543
9.6.3 Binary Searchcccooviiiiiiiiiiiin 546
9.6.4 Simple Algorithmscccooviiiiiiiiiii 547
9.6.5 Bulk Operationsccccooeviviiiiiininiiiiiiie, 549
9.6.6 Converting between Collections and Arrays 550
9.6.7 Writing Your Own Algorithmscccocoviviniiinn 551
9.7 Legacy Collectionscccccoiiiiiiiiiiiiiiiiiiiiiccccc 552
9.7.1 The Hashtable Classccocvevviviiviiiniiiiiii 553
9.7.2 Enumerationscccccoviiiiiiiiiiiniiii 553
9.7.3 Property Mapsccccocvviiiiiiiiiiiiiiiiiii 555
9.7.4 5tacks ... 558
9.7.5 Bit Sets oo 559
Chapter 10: Graphical User Interface Programmingccccuceeerrrsssacnennns 565
10.1 A History of Java User Interface Toolkitsccccceeiviiinininnnne. 565
10.2 Displaying Framesccccocoviiiiiiiininiiiiiie 567
10.2.1 Creating a Framecccocoeviiiiiiiniiiiiiiicc, 568
10.2.2 Frame Propertiesccccociviiiiiiiiiiiiiiiii, 570
10.3 Displaying Information in a Componentcccceceviviiinninne. 574
10.3.1 Working with 2D Shapescccocveiiiiiiiiiiii 579
10.3.2 Using Color ..o, 587
10.3.3 Using Fontscccooieiiiiiiiiiiiiii 589
10.3.4 Displaying Imagescccccoevviviiininiiiiiiiiie, 597
10.4 Event Handlingcccccooiiiiiiiiiiiiiiiiiicce, 598
10.4.1 Basic Event Handling Conceptscccccoovevevirviiiiininncne. 598
10.4.2 Example: Handling a Button Clickccccooiiiiiiininnn 600
10.4.3 Specifying Listeners Conciselyccccoovveiviniiinininnnnn, 604
10.4.4 Adapter Classescccoovviiiiiiiiiiiniiiiiiiii e, 605
10.4.5 ACHONS oviiiiiiiiiicc e 608
10.4.6 Mouse Eventsccccovveiiiiiiiniiiiiiiiici 614
10.4.7 The AWT Event Hierarchyccccocoviniiiininiiiinn 620
10.5 The Preferences APIcccooiiiiiiiiiiiiiiiiicccceeee e 624
Chapter 11: User Interface Components with Swingcccccvviiiemeecennns 631
11.1 Swing and the Model-View-Controller Design Pattern 632
11.2 Introduction to Layout Managementcccocevvviiniiiiniinnninnn, 636

Contents

11.3

11.4

11.6

11.2.1 Layout Managersccccecueveviiviiniiiiiiiiiiiicieieicccncne 637
11.2.2 Border Layoutccccociviiiiiiniiiiiiiiiiiiiciicic, 639
11.2.3 Grid Layoutccoooovviiiiiiiiiii 642
Text INput ..o 643
T11.3.7 Text Fields cooooeiiiieieiiieeee e 643
11.3.2 Labels and Labeling Componentsccccoceevvivviniininnnnne. 645
11.3.3 Password Fieldscccccceeiieiiiiiiiieeciieee e, 647
T11.3.4 TeXt ATEAS oocvvrieeeieciiiieeeeeecireeeeeeeetrreeeeesnrreeeeeeessneaeeessennnns 647
11.3.5 SCroll PAnescccoeeuiiieiiiieiiiiiee ettt 648
Choice Componentsccccecviviiiiiiiiiiiiiiiii 651
11.4.1 CReCKDOXES ..uuviiiiiieiiiiieeeeeeciieee e e e eiitee e e e eerree e e e e earaeaeeeeeens 651
11.4.2 Radio BUttonscceecvieeiiiieeiieeciee e 654
11.4.3 BOTAEIS woviiiiiiiiiiieie ettt ettt e e e et e e e e e eerreee e e e esnraeaeeeennns 658
11.4.4 COmbO BOXES .uvvviiieiiiiiiieeieiieeee ettt 661
T11.4.5 SHAEIS .eveiieieeiiiieee et e e s e eerre e e e e e eraeaeeeennes 665
AV, <] N T PSP PPPPPPRN 671
11.5.1 Menu Buildingccccovviiiiniiiiiiiiice, 672
11.5.2 Icons in Menu ItemMScoocvviieiieiiciiiiee e 675
11.5.3 Checkbox and Radio Button Menu Items 676
11.5.4 Pop-Up MEeNUSccccceivuiiiiiiiiiiiiiiiiiciicic e 677
11.5.5 Keyboard Mnemonics and Acceleratorscccceeuine 679
11.5.6 Enabling and Disabling Menu Itemsccoccovvviinnnnnn. 682
11.5.7 TOOIDAIS .eoceieiiiiieee ettt e e aae e e e e 687
11.5.8 TOOIPS cevoveiveieiiicieicctcieece e, 689
Sophisticated Layout Managementc.cccoiiiniiiniiininnnn, 690
11.6.1 The Grid Bag Layoutcccccoeuiviiviiiiiiiiiiiiiiiiciiin, 691
11.6.1.1 The gridx, gridy, gridwidth, and gridheight
Parametersccccoveeiiiieieieiiieee e 693
11.6.1.2 Weight Fieldsccccocovviiviiiniiiiiii 694
11.6.1.3 The fill and anchor Parameterscccceevverenns 694
11.6.1.4 Paddingccooovviiiiiiiiiiiiii 694
11.6.1.5 Alternative Method to Specify the gridx, gridy,
gridwidth, and gridheight Parameters 695
11.6.1.6 A Grid Bag Layout Recipeccccoevverrnrinnnnnn. 695

11.6.1.7 A Helper Class to Tame the Grid Bag
ConSstraintsoeeeiiivieiiiiieeeee e 696

Contents

11.6.2 Custom Layout Managersccocevvvieiiieniiniencncicinene, 702

11.7 Dialog BOXES ...ccovuiiiiiiiiiiiiiiiiiiiiicicci 706
11.7.1 Option Dialogscccoeviiiiviiiiiiiiiiciicc 707
11.7.2 Creating Dialogsc.ccooevieiiiiiiiiiecc, 712
11.7.3 Data Exchangeccccooeviiiniiiiiiiii 716
11.7.4 File Dialogscccccovviiiiiiiiiiiiiiiii 723
Chapter 12: CONCUITENCYcccvemmrmisssmmsnmssssmmssmsssssnssssssssnssssssssanssssssssnnsnnss 733
12.1 What Are Threads?ccccceeiieiiiiiiiie e 734
12.2 Thread Statescccccveeeeiiieeiie ettt re e et e e s eree e 739
12.2.1 NeW Threadscceeeecviiiieeeeiiiee et e rree e 740
12.2.2 Runnable Threadscccccoeeviiiiiiiiiiiiiec e 740
12.2.3 Blocked and Waiting Threadsccccoovevvivrnininnnnn. 741
12.2.4 Terminated Threadsccccccvveieeeiiiiiiiieeeiieee e 742

12.3 Thread Propertiescccocoviiiiiiiiiiiiiiiiiie 743
12.3.1 Interrupting Threadsccccooovivinininiiiiiie, 743
12.3.2 Daemon Threadsccccceeeiiiiiieeiiiiieee e 746
12.3.3 Thread NAmESccocecviiiieeeiiieeeeeecteee e eesreee e e eenneee e eanes 747
12.3.4 Handlers for Uncaught Exceptionsccccccooiiiiinnnnnnn. 747
12.3.5 Thread Prioritiescccccvveeeeiiiiieeeeeiiiee e eeeee e 749

12.4 Synchronization ... 750
12.4.1 An Example of a Race Conditionccccceciviiininnnn. 750
12.4.2 The Race Condition Explainedcccccociviiiiiniininnnnn. 752
12.4.3 Lock Objectsccooiviiiiiiiiiiiiiiiiiiii 755
12.4.4 Condition Objectsccccceiviiiiiiiiiiiiiiiiiiii, 758
12.4.5 The synchronized Keywordcccooiiiiiiiiiii, 764
12.4.6 Synchronized Blocksccccccoviniiiiiiiiiiiiiiiiiie 768
12.4.7 The Monitor Conceptccccovcuiriiiiiiiiiiiiiiiiiiece, 770
12.4.8 Volatile Fieldsccooeiuiiiiiieiiiiiieeeecieee e 771
12.4.9 Final Variablesccccooiiiieieiiiiiee e 772
T12.4.70 ATOIMICS tivriiiiiiiiieiiiiiieeeeee e eeeeeeececrrrrre e e e e eeeeeaaeeeeeeeaenas 773
12.4.17 DeadlOCKS .ccvvvievviieeiiieeeiieeeiiee ettt e ereeeeereeeeereesnraeeeeneeas 775
12.4.12 Thread-Local Variablescccccoeviiiiiiiieiiiiiieeceeiieeee e, 778
12.4.13 Why the stop and suspend Methods Are Deprecated 779

12.5 Thread-Safe Collectionsccccvveevvieieiiiieiiiee e 781

12.5.1 Blocking QUeUEsccoceeviiviiiiiiiiiiiiiiic 781

Contents

12.5.2 Efficient Maps, Sets, and Queuescccceceeveevieievencnncnne. 789
12.5.3 Atomic Update of Map Entriesccooviviniiiininnnn 790
12.5.4 Bulk Operations on Concurrent Hash Maps 794
12.5.5 Concurrent Set VIEWScccccoviiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeeeees 796
12.5.6 Copy on Write Arrayscccccoeeevieviiiiiiiiniiiiiiciecccen, 797
12.5.7 Parallel Array Algorithmsccocoviiiiiiiinniiii 797
12.5.8 Older Thread-Safe Collectionsccccceeeevvveeeeeriniiereeeenns 799

12.6 Tasks and Thread PooISccccoeeciiiiiiiieiiiiee e, 800
12.6.1 Callables and Futurescccceeeeeiiiieieicciiieee e, 800
12.6.2 EXECULOIS ooieiiiiieeeieciiiee e e eeiieee e e e et ee e e e eeteee e s e s nnneeeseennes 802
12.6.3 Controlling Groups of Tasksccceooiiiiiiiiii, 806
12.6.4 The Fork-Join Frameworkccocceevviiniinicincenieenieene 811

12.7 Asynchronous Computationscccceevevviviiiiiiiiiiiiiii, 814
12.7.1 Completable Futuresccccoooviviiiiiiniiiiiiiiii, 815
12.7.2 Composing Completable Futuresccccocoovviviininininn. 817
12.7.3 Long-Running Tasks in User Interface Callbacks 823

T12.8 PrOCESSES ..uuvviiieiieiiiiiieee ettt e e et ee e e e ettt e e e s et eeeesentbreaeseenneneeas 831
12.8.1 Building a Processccccoovvviviiviiiiiiiiiiiiiiii, 832
12.8.2 Running a Processcccccooviiiiiiiiiiiiiiiiiiice, 834
12.8.3 Process Handlescccceveveeciiiieeieseiiiiee e eeeeee e 835

Y o 0T T) 839
o= R UUUPR 843

This page intentionally left blank

Preface

To the Reader

In late 1995, the Java programming language burst onto the Internet scene
and gained instant celebrity status. The promise of Java technology was that
it would become the universal glue that connects users with information
wherever it comes from—web servers, databases, information providers, or
any other imaginable source. Indeed, Java is in a unique position to fulfill
this promise. It is an extremely solidly engineered language that has gained
wide acceptance. Its built-in security and safety features are reassuring both
to programmers and to the users of Java programs. Java has built-in support
for advanced programming tasks, such as network programming, database
connectivity, and concurrency.

Since 1995, eleven major revisions of the Java Development Kit have been
released. Over the course of the last 20 years, the Application Programming
Interface (API) has grown from about 200 to over 4,000 classes. The API now
spans such diverse areas as user interface construction, database management,
internationalization, security, and XML processing.

The book that you are reading right now is the first volume of the eleventh
edition of Core Java. Each edition closely followed a release of the Java Devel-
opment Kit, and each time, we rewrote the book to take advantage of the
newest Java features. This edition has been updated to reflect the features of
Java Standard Edition (SE) 9, 10, and 11.

As with the previous editions of this book, we still target serious programmers
who want to put Java to work on real projects. We think of you, our reader, as a
programmer with a solid background in a programming language other than
Java, and we assume that you don't like books filled with toy examples (such
as toasters, zoo animals, or “nervous text”). You won't find any of these in
our book. Our goal is to enable you to fully understand the Java language
and library, not to give you an illusion of understanding.

In this book you will find lots of sample code demonstrating almost every
language and library feature that we discuss. We keep the sample programs
purposefully simple to focus on the major points, but, for the most part, they

xix

Preface

aren’t fake and they don’t cut corners. They should make good starting points
for your own code.

We assume you are willing, even eager, to learn about all the advanced fea-
tures that Java puts at your disposal. For example, we give you a detailed
treatment of

* Object-oriented programming

¢ Reflection and proxies

¢ Interfaces and inner classes

* Exception handling

¢ Generic programming

¢ The collections framework

¢ The event listener model

e Graphical user interface design

¢ Concurrency

With the explosive growth of the Java class library, a one-volume treatment
of all the features of Java that serious programmers need to know is no longer
possible. Hence, we decided to break up the book into two volumes. This
first volume concentrates on the fundamental concepts of the Java language,
along with the basics of user-interface programming. The second volume,

Core Java, Volume II—Advanced Features, goes further into the enterprise features
and advanced user-interface programming. It includes detailed discussions of

e The Stream API

* Tile processing and regular expressions

e Databases

¢ XML processing

* Annotations

* Internationalization

* Network programming

* Advanced GUI components

* Advanced graphics

* Native methods

When writing a book, errors and inaccuracies are inevitable. We'd very much
like to know about them. But, of course, we'd prefer to learn about each of
them only once. We have put up a list of frequently asked questions, bug

fixes, and workarounds on a web page at http://horstmann.com/corejava. Strategi-
cally placed at the end of the errata page (to encourage you to read through

http://horstmann.com/corejava

Preface

it first) is a form you can use to report bugs and suggest improvements. Please
don't be disappointed if we don’t answer every query or don't get back to
you immediately. We do read all e-mail and appreciate your input to make
future editions of this book clearer and more informative.

A Tour of This Book

Chapter 1 gives an overview of the capabilities of Java that set it apart from
other programming languages. We explain what the designers of the language
set out to do and to what extent they succeeded. Then, we give a short history
of how Java came into being and how it has evolved.

In Chapter 2, we tell you how to download and install the JDK and the pro-
gram examples for this book. Then we guide you through compiling and
running a console application and a graphical application. You will see how
to use the plain JDK, a Java IDE, and the JShell tool.

Chapter 3 starts the discussion of the Java language. In this chapter, we
cover the basics: variables, loops, and simple functions. If you are a C or C++
programmer, this is smooth sailing because the syntax for these language
features is essentially the same as in C. If you come from a non-C background
such as Visual Basic, you will want to read this chapter carefully.

Object-oriented programming (OOP) is now in the mainstream of program-
ming practice, and Java is an object-oriented programming language.
Chapter 4 introduces encapsulation, the first of two fundamental building
blocks of object orientation, and the Java language mechanism to implement
it—that is, classes and methods. In addition to the rules of the Java language,
we also give advice on sound OOP design. Finally, we cover the marvelous
javadoc tool that formats your code comments as a set of hyperlinked web
pages. If you are familiar with C++, you can browse through this chapter
quickly. Programmers coming from a non-object-oriented background should
expect to spend some time mastering the OOP concepts before going further
with Java.

Classes and encapsulation are only one part of the OOP story, and Chapter 5
introduces the other—namely, inheritance. Inheritance lets you take an existing
class and modify it according to your needs. This is a fundamental technique
for programming in Java. The inheritance mechanism in Java is quite similar
to that in C++. Once again, C++ programmers can focus on the differences
between the languages.

Preface

Chapter 6 shows you how to use Java's notion of an inferface. Interfaces let
you go beyond the simple inheritance model of Chapter 5. Mastering interfaces
allows you to have full access to the power of Java's completely object-oriented
approach to programming. After we cover interfaces, we move on to lambda
expressions, a concise way for expressing a block of code that can be executed
at a later point in time. We then cover a useful technical feature of Java
called inner classes.

Chapter 7 discusses exception handling—Java’s robust mechanism to deal with
the fact that bad things can happen to good programs. Exceptions give you
an efficient way of separating the normal processing code from the error
handling. Of course, even after hardening your program by handling all ex-
ceptional conditions, it still might fail to work as expected. In the final part
of this chapter, we give you a number of useful debugging tips.

Chapter 8 gives an overview of generic programming. Generic programming
makes your programs easier to read and safer. We show you how to use
strong typing and remove unsightly and unsafe casts, and how to deal with
the complexities that arise from the need to stay compatible with older
versions of Java.

The topic of Chapter 9 is the collections framework of the Java platform.
Whenever you want to collect multiple objects and retrieve them later, you
should use a collection that is best suited for your circumstances, instead of
just tossing the elements into an array. This chapter shows you how to take
advantage of the standard collections that are prebuilt for your use.

Chapter 10 provides an introduction into GUI programming. We show how
you can make windows, how to paint on them, how to draw with geometric
shapes, how to format text in multiple fonts, and how to display images. Next,
you'll see how to write code that responds to events, such as mouse clicks
or key presses.

Chapter 11 discusses the Swing GUI toolkit in great detail. The Swing
toolkit allows you to build cross-platform graphical user interfaces. You'll
learn all about the various kinds of buttons, text components, borders, sliders,
list boxes, menus, and dialog boxes. However, some of the more advanced
components are discussed in Volume II.

Chapter 12 finishes the book with a discussion of concurrency, which enables
you to program tasks to be done in parallel. This is an important and exciting
application of Java technology in an era where most processors have multiple
cores that you want to keep busy.

Preface

A bonus JavaFX chapter contains a rapid introduction into JavaFX, a modern
GUI toolkit for desktop applications. If you read the print book, download
the chapter from the book companion site at http://horstmann.com/corejava.

The Appendix lists the reserved words of the Java language.

Conventions

As is common in many computer books, we use monospace type to represent
computer code.

NOTE: Notes are tagged with “note” icons that look like this.

TIP: Tips are tagged with “tip” icons that look like this.

C++ NOTE: There are many C++ notes that explain the differences between
Java and C++. You can skip over them if you don’t have a background in C++
or if you consider your experience with that language a bad dream of which
you’d rather not be reminded.

0 CAUTION: When there is danger ahead, we warn you with a “caution” icon.

Java comes with a large programming library, or Application Programming
Interface (API). When using an API call for the first time, we add a short
summary description at the end of the section. These descriptions are a bit
more informal but, we hope, also a little more informative than those in the
official online API documentation. The names of interfaces are in italics, just
like in the official documentation. The number after a class, interface, or
method name is the JDK version in which the feature was introduced, as
shown in the following example:

Application Programming Interface

http://horstmann.com/corejava

Preface

w. i ’ i W i
Programs whose source code is on the book’s companion web site are
presented as listings, for instance:

Listing 1.1 InputTest/InputTest.java

Sample Code

The web site for this book at http://horstmann.com/corejava contains all sample
code from the book. See Chapter 2 for more information on installing the
Java Development Kit and the sample code.

Register your copy of Core Java, Volume I—Fundamentals, Eleventh Edition, on the
InformlT site for convenient access to updates and/or corrections as they become
available. To start the registration process, go to informit.com/register and log in
or create an account. Enter the product ISBN (9780135166307) and click Submit.
Look on the Registered Products tab for an Access Bonus Content link next to
this product, and follow that link to access any available bonus materials. If you
would like to be notified of exclusive offers on new editions and updates, please
check the box to receive email from us.

http://horstmann.com/corejava
http://toinformit.com/register

Acknowledgments

Writing a book is always a monumental effort, and rewriting it doesn’t seem
to be much easier, especially with the continuous change in Java technology.
Making a book a reality takes many dedicated people, and it is my great
pleasure to acknowledge the contributions of the entire Core Java team.

A large number of individuals at Pearson provided valuable assistance but
managed to stay behind the scenes. I'd like them all to know how much I
appreciate their efforts. As always, my warm thanks go to my editor, Greg
Doench, for steering the book through the writing and production process,
and for allowing me to be blissfully unaware of the existence of all those
folks behind the scenes. I am very grateful to Julie Nahil for production sup-
port, and to Dmitry Kirsanov and Alina Kirsanova for copyediting and type-
setting the manuscript. My thanks also to my coauthor of earlier editions,
Gary Cornell, who has since moved on to other ventures.

Thanks to the many readers of earlier editions who reported embarrassing
errors and made lots of thoughtful suggestions for improvement. I am partic-
ularly grateful to the excellent reviewing team who went over the manuscript
with an amazing eye for detail and saved me from many embarrassing errors.

Reviewers of this and earlier editions include Chuck Allison (Utah Valley
University), Lance Andersen (Oracle), Paul Anderson (Anderson Software
Group), Alec Beaton (IBM), Cliff Berg, Andrew Binstock (Oracle), Joshua
Bloch, David Brown, Corky Cartwright, Frank Cohen (PushToTest), Chris
Crane (devXsolution), Dr. Nicholas J. De Lillo (Manhattan College), Rakesh
Dhoopar (Oracle), David Geary (Clarity Training), Jim Gish (Oracle), Brian
Goetz (Oracle), Angela Gordon, Dan Gordon (Electric Cloud), Rob Gordon,
John Gray (University of Hartford), Cameron Gregory (olabs.com), Marty Hall
(coreservlets.com, Inc.), Vincent Hardy (Adobe Systems), Dan Harkey (San
Jose State University), William Higgins (IBM), Vladimir Ivanovic (PointBase),
Jerry Jackson (CA Technologies), Tim Kimmet (Walmart), Chris Laffra,
Charlie Lai (Apple), Angelika Langer, Doug Langston, Hang Lau (McGill
University), Mark Lawrence, Doug Lea (SUNY Oswego), Gregory Longshore,
Bob Lynch (Lynch Associates), Philip Milne (consultant), Mark Morrissey
(The Oregon Graduate Institute), Mahesh Neelakanta (Florida Atlantic Uni-
versity), Hao Pham, Paul Philion, Blake Ragsdell, Stuart Reges (University of
Arizona), Simon Ritter (Azul Systems), Rich Rosen (Interactive Data Corpora-
tion), Peter Sanders (ESSI University, Nice, France), Dr. Paul Sanghera (San

XXV

http://olabs.com
http://coreservlets.com

Acknowledgments

Jose State University and Brooks College), Paul Sevinc (Teamup AG), Devang
Shah (Sun Microsystems), Yoshiki Shibata, Bradley A. Smith, Steven Stelting
(Oracle), Christopher Taylor, Luke Taylor (Valtech), George Thiruvathukal,
Kim Topley (StreamingEdge), Janet Traub, Paul Tyma (consultant), Peter van
der Linden, Christian Ullenboom, Burt Walsh, Dan Xu (Oracle), and John
Zavgren (Oracle).

Cay Horstmann
San Francisco, California
June 2018

CHAPTER

An Introduction to Java

In this chapter

e 1.1 Java as a Programming Platform, page 1

e 1.2 The Java “White Paper” Buzzwords, page 2

e 1.3 Java Applets and the Internet, page 9

e 1.4 A Short History of Java, page 10

e 1.5 Common Misconceptions about Java, page 13

The first release of Java in 1996 generated an incredible amount of excitement,
not just in the computer press, but in mainstream media such as the New
York Times, the Washington Post, and BusinessWeek. Java has the distinction of
being the first and only programming language that had a ten-minute story
on National Public Radio. A $100,000,000 venture capital fund was set up
solely for products using a specific computer language. I hope you will enjoy
a brief history of Java that you will find in this chapter.

1.1 Java as a Programming Platform

In the first edition of this book, my coauthor Gary Cornell and I had this to
write about Java:

“As a computer language, Java's hype is overdone: Java is certainly a good
programming language. There is no doubt that it is one of the better languages
available to serious programmers. We think it could potentially have been a

Chapter 1 m An Introduction to Java

great programming language, but it is probably too late for that. Once a lan-
guage is out in the field, the ugly reality of compatibility with existing code
sets in.”

Our editor got a lot of flack for this paragraph from someone very high up
at Sun Microsystems, the company that originally developed Java. The Java
language has a lot of nice features that we will examine in detail later in this
chapter. It has its share of warts, and some of the newer additions to the
language are not as elegant as the original features because of compatibility
requirements.

But, as we already said in the first edition, Java was never just a language.
There are lots of programming languages out there, but few of them make
much of a splash. Java is a whole platform, with a huge library, containing
lots of reusable code, and an execution environment that provides services
such as security, portability across operating systems, and automatic garbage
collection.

As a programmer, you will want a language with a pleasant syntax and
comprehensible semantics (i.e., not C++). Java fits the bill, as do dozens of
other fine languages. Some languages give you portability, garbage collection,
and the like, but they don't have much of a library, forcing you to roll your
own if you want fancy graphics or networking or database access. Well, Java
has everything—a good language, a high-quality execution environment, and
a vast library. That combination is what makes Java an irresistible proposition
to so many programmers.

1.2 The Java “White Paper” Buzzwords

The authors of Java wrote an influential white paper that explains their design
goals and accomplishments. They also published a shorter overview that is
organized along the following 11 buzzwords:

1. Simple
Object-Oriented
Distributed

Robust

Secure
Architecture-Neutral
Portable

Interpreted

® NS TN

1.2 ®m The Java “White Paper” Buzzwords n

9. High-Performance

10. Multithreaded

11. Dynamic

In the following subsections, you will find a summary, with excerpts from

the white paper, of what the Java designers say about each buzzword, together
with a commentary based on my experiences with the current version of Java.

p NOTE: The white paper can be found at www.oracle.com/technetwork/java
é /langenv-140151.html. You can retrieve the overview with the 11 buzzwords at
http://horstmann.com/corejava/java-an-overview/7Gosling.pdf.

1.2.1 Simple

We wanted to build a system that could be programmed easily without a lot of
esoteric training and which leveraged today’s standard practice. So even though
we found that C++ was unsuitable, we designed Java as closely to C++ as pos-
sible in order to make the system more comprehensible. Java omits many rarely
used, poorly understood, confusing features of C++ that, in our experience, bring
more grief than benefit.

The syntax for Java is, indeed, a cleaned-up version of C++ syntax. There is
no need for header files, pointer arithmetic (or even a pointer syntax), struc-
tures, unions, operator overloading, virtual base classes, and so on. (See the
C++ notes interspersed throughout the text for more on the differences be-
tween Java and C++.) The designers did not, however, attempt to fix all of
the clumsy features of C++. For example, the syntax of the switch statement
is unchanged in Java. If you know C++, you will find the transition to the
Java syntax easy.

At the time Java was released, C++ was actually not the most commonly used
programming language. Many developers used Visual Basic and its drag-and-
drop programming environment. These developers did not find Java simple.
It took several years for Java development environments to catch up. Nowa-
days, Java development environments are far ahead of those for most other
programming languages.

Another aspect of being simple is being small. One of the goals of Java is to
enable the construction of software that can run stand-alone on small machines.
The size of the basic interpreter and class support is about 40K; the basic stan-
dard libraries and thread support (essentially a self-contained microkernel) add
another 175K.

http://www.oracle.com/technetwork/java/langenv-140151.html
http://www.oracle.com/technetwork/java/langenv-140151.html
http://horstmann.com/corejava/java-an-overview/7Gosling.pdf

Chapter 1 m An Introduction to Java

This was a great achievement at the time. Of course, the library has since
grown to huge proportions. There is now a separate Java Micro Edition with
a smaller library, suitable for embedded devices.

1.2.2 Object-Oriented

Simply stated, object-oriented design is a programming technique that focuses
on the data—objects—and on the interfaces to those objects. To make an analogy
with carpentry, an “object-oriented” carpenter would be mostly concerned with
the chair he is building, and secondarily with the tools used to make it; a “non-
object-oriented” carpenter would think primarily of his tools. The object-oriented
facilities of Java are essentially those of C++.

Object orientation was pretty well established when Java was developed. The
object-oriented features of Java are comparable to those of C++. The major
difference between Java and C++ lies in multiple inheritance, which Java has
replaced with a simpler concept of interfaces. Java has a richer capacity for
runtime introspection (discussed in Chapter 5) than C++.

1.2.3 Distributed

Java has an extensive library of routines for coping with TCP/IP protocols like
HTTP and FTP. Java applications can open and access objects across the Net
via URLs with the same ease as when accessing a local file system.

Nowadays, one takes this for granted—but in 1995, connecting to a web
server from a C++ or Visual Basic program was a major undertaking.

1.2.4 Robust

Java is intended for writing programs that must be reliable in a variety of ways.
Java puts a lot of emphasis on early checking for possible problems, later dynamic
(runtime) checking, and eliminating situations that are error-prone. . . . The
single biggest difference between Java and C/C++ is that Java has a pointer
model that eliminates the possibility of overwriting memory and corrupting data.

The Java compiler detects many problems that in other languages would show
up only at runtime. As for the second point, anyone who has spent hours
chasing memory corruption caused by a pointer bug will be very happy with
this aspect of Java.

1.2 ®m The Java “White Paper” Buzzwords

1.2.5 Secure

Java is intended to be used in networked/distributed environments. Toward that
end, a lot of emphasis has been placed on security. Java enables the construction
of virus-free, tamper-free systems.

From the beginning, Java was designed to make certain kinds of attacks
impossible, among them:

* Overrunning the runtime stack—a common attack of worms and viruses
* Corrupting memory outside its own process space

* Reading or writing files without permission

Originally, the Java attitude towards downloaded code was “Bring it on!”
Untrusted code was executed in a sandbox environment where it could not
impact the host system. Users were assured that nothing bad could happen
because Java code, no matter where it came from, could never escape from
the sandbox.

However, the security model of Java is complex. Not long after the first version
of the Java Development Kit was shipped, a group of security experts at
Princeton University found subtle bugs that allowed untrusted code to attack
the host system.

Initially, security bugs were fixed quickly. Unfortunately, over time, hackers
got quite good at spotting subtle flaws in the implementation of the security
architecture. Sun, and then Oracle, had a tough time keeping up with bug
fixes.

After a number of high-profile attacks, browser vendors and Oracle became
increasingly cautious. Java browser plug-ins no longer trust remote code unless
it is digitally signed and users have agreed to its execution.

as originally envisioned, Java was well ahead of its time. A competing code
delivery mechanism from Microsoft relied on digital signatures alone for security.
Clearly this was not sufficient: As any user of Microsoft’s own products can
confirm, programs from well-known vendors do crash and create damage.

NOTE: Even though in hindsight, the Java security model was not as successful

Chapter 1 m An Introduction to Java

1.2.6 Architecture-Neutral

The compiler generates an architecture-neutral object file format. The compiled
code is executable on many processors, given the presence of the Java runtime
system. The Java compiler does this by generating bytecode instructions which
have nothing to do with a particular computer architecture. Rather, they are
designed to be both easy to interpret on any machine and easy to translate into
native machine code on the fly.

Generating code for a “virtual machine” was not a new idea at the time.
Programming languages such as Lisp, Smalltalk, and Pascal had employed
this technique for many years.

Of course, interpreting virtual machine instructions is slower than running
machine instructions at full speed. However, virtual machines have the option
of translating the most frequently executed bytecode sequences into machine
code—a process called just-in-time compilation.

Java’s virtual machine has another advantage. It increases security because it
can check the behavior of instruction sequences.

1.2.7 Portable

Unlike C and C++, there are no “implementation-dependent” aspects of the
specification. The sizes of the primitive data types are specified, as is the behavior
of arithmetic on them.

For example, an int in Java is always a 32-bit integer. In C/C++, int can mean
a 16-bit integer, a 32-bit integer, or any other size that the compiler vendor
likes. The only restriction is that the int type must have at least as many bytes
as a short int and cannot have more bytes than a long int. Having a fixed size
for number types eliminates a major porting headache. Binary data is stored
and transmitted in a fixed format, eliminating confusion about byte ordering.
Strings are saved in a standard Unicode format.

The libraries that are a part of the system define portable interfaces. For example,
there is an abstract Window class and implementations of it for UNIX, Windows,
and the Macintosh.

The example of a Window class was perhaps poorly chosen. As anyone who has
ever tried knows, it is an effort of heroic proportions to implement a user
interface that looks good on Windows, the Macintosh, and ten flavors of
UNIX. Java 1.0 made the heroic effort, delivering a simple toolkit that provided
common user interface elements on a number of platforms. Unfortunately,
the result was a library that, with a lot of work, could give barely acceptable

1.2 ®m The Java “White Paper” Buzzwords

results on different systems. That initial user interface toolkit has since been
replaced, and replaced again, and portability across platforms remains an issue.

However, for everything that isn't related to user interfaces, the Java libraries
do a great job of letting you work in a platform-independent manner. You
can work with files, regular expressions, XML, dates and times, databases,
network connections, threads, and so on, without worrying about the under-
lying operating system. Not only are your programs portable, but the Java
APIs are often of higher quality than the native ones.

1.2.8 Interpreted

The Java interpreter can execute Java bytecodes directly on any machine to
which the interpreter has been ported. Since linking is a more incremental
and lightweight process, the development process can be much more rapid and
exploratory.

This was a real stretch. Anyone who has used Lisp, Smalltalk, Visual Basic,
Python, R, or Scala knows what a “rapid and exploratory” development process
is. You try out something, and you instantly see the result. For the first
20 years of Java's existence, development environments were not focused on
that experience. It wasn't until Java 9 that the jshell tool supported rapid and
exploratory programming.

1.2.9 High-Performance

While the performance of interpreted bytecodes is usually more than adequate,
there are situations where higher performance is required. The bytecodes can be
translated on the fly (at runtime) into machine code for the particular CPU the
application is running on.

In the early years of Java, many users disagreed with the statement that the
performance was “more than adequate.” Today, however, the just-in-time
compilers have become so good that they are competitive with tradi-
tional compilers and, in some cases, even outperform them because they have
more information available. For example, a just-in-time compiler can monitor
which code is executed frequently and optimize just that code for speed. A
more sophisticated optimization is the elimination (or ”inlining”) of function
calls. The just-in-time compiler knows which classes have been loaded. It can
use inlining when, based upon the currently loaded collection of classes, a
particular function is never overridden, and it can undo that optimization
later if necessary.

Chapter 1 m An Introduction to Java

1.2.10 Multithreaded

[The] benefits of multithreading are better interactive responsiveness and real-time
behavior.

Nowadays, we care about concurrency because Moore’s law has come to an
end. Instead of faster processors, we just get more of them, and we have to
keep them busy. Yet when you look at most programming languages, they
show a shocking disregard for this problem.

Java was well ahead of its time. It was the first mainstream language to support
concurrent programming. As you can see from the white paper, its motivation
was a little different. At the time, multicore processors were exotic, but web
programming had just started, and processors spent a lot of time waiting for
a response from the server. Concurrent programming was needed to make
sure the user interface didn't freeze.

Concurrent programming is never easy, but Java has done a very good job
making it manageable.

1.2.11 Dynamic

In a number of ways, Java is a more dynamic language than C or C++. It was
designed to adapt to an evolving environment. Libraries can freely add new
methods and instance variables without any effect on their clients. In Java,
finding out runtime type information is straightforward.

This is an important feature in situations where code needs to be added to
a running program. A prime example is code that is downloaded from the
Internet to run in a browser. In C or C++, this is indeed a major challenge,
but the Java designers were well aware of dynamic languages that made it
easy to evolve a running program. Their achievement was to bring this feature
to a mainstream programming language.

p NOTE: Shortly after the initial success of Java, Microsoft released a product
called J++ with a programming language and virtual machine that were almost
identical to Java. This effort failed to gain traction, and Microsoft followed
through with another language called C# that also has many similarities to Java
but runs on a different virtual machine. This book does not cover J++ or C#.

1.3 m Java Applets and the Internet

1.3 Java Applets and the Internet

The idea here is simple: Users will download Java bytecodes from the Internet
and run them on their own machines. Java programs that work on web pages
are called applets. To use an applet, you only need a Java-enabled web
browser, which will execute the bytecodes for you. You need not install any
software. You get the latest version of the program whenever you visit the
web page containing the applet. Most importantly, thanks to the security of
the virtual machine, you never need to worry about attacks from hostile code.

Inserting an applet into a web page works much like embedding an image.
The applet becomes a part of the page, and the text flows around the space
used for the applet. The point is, this image is alive. It reacts to user com-
mands, changes its appearance, and exchanges data between the computer
presenting the applet and the computer serving it.

Figure 1.1 shows the Jmol applet that displays molecular structures. By using
the mouse, you can rotate and zoom each molecule to better understand
its structure. At the time that applets were invented, this kind of direct ma-
nipulation was not achievable with web pages—there was only rudimentary
JavaScript and no HTML canvas.

& jmol applet amina acids demao - Firetox

Lile Edit wiew bligtory Qookmarks lools Lelp

L I ol <, 11 httpugjmol.sourceforge netidemofaminoacids/ v | [
x_J ala - :-:Jarg- % |asn- % |asp-
alanine arginine asparagine aspartate
amino acids Sljcys- Efgh- Emjgu- K| oy
Cysline glutarmine glutamate glycine
% | his - % |fle- % | leu - X |lvs -
histidine isoleLicine leucine lysine
>: J met - [¥|phe - % |pro - % | ser -
merhlonine pherylalanine proline serine
x |thr - X |trp - % | ryr - % |wal -
threonine Uyplophan Lyrosine valine
salucl * | select manchain | select sidechain |

wireframe on | wireframe 0.1 | wireframe 0.2 |

cpkoff | cpk20% | cpkon |

label %a | label%n | label off |

M| color label white | color label none |

color atoms epk | color atoms amino |

Figure 1.1 The Jmol applet

